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Abstract

The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, ran-
dom and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient
trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of
nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works
has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of
the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the
other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation
(RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and
the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed
method is illustrated by means of numerical simulations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In several physical, chemical and biological phenomena, noise plays a significant role. This is the case, for
example, in turbulent diffusion, genetic regulation, chemical kinetic, biological waste treatment, polymer
dynamics and large scale integrated (VLSI) circuit design. When the evolution of such noisy phenomena
has to be studied, the mathematical modeling of such situations is not well matched by deterministic differen-
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tial equations. In these cases, stochastic differential equations (SDEs) are more suitable when a more realistic
modeling needs to be considered. Since, unfortunately, analytic solutions of the equations are rarely available,
in recent years much attention has been paid to design numerical methods for approximating their solutions.

A variety of examples of SDEs used for modeling nonlinear physical systems are defined by quite com-
plicated drift components but relatively simple diffusion terms [1]. For instance, equations driven either by a
single Wiener process or by commutative noise (understood as commutativity of the diffusion vector fields in
the sense of Lie algebras). In these situations the simplicity in the diffusion terms of the equations has
allowed the development of analytical methods for the better understanding of their dynamics. Perhaps
the most interesting results are those dealing with the extant conjugacy (diffeomorfism that performs an sta-
tionary random coordinate change) between random differential equations (RDE) and commutative noise
SDEs [1–3]. This idea goes back to the Doss’s representation of diffusions [4] and rests upon the decompo-
sition of the flow by the Itô Ventzell formula [5]. The main advantage of such approach comes from the fact
that objects of interest in random dynamics (i.e. random fixed points, random attractors, random bifurca-
tions, etc.) are harder to describe in the framework of stochastic calculus than in the framework of classical
deterministic calculus. For instance, the conjugacy property has been already used for establishing the exis-
tence of global attractors in SDEs [1] and for stating a Hartman–Grobman theorem for this kind of equa-
tions [3].

The aim of this paper is to take advantage of the extant conjugacy property between random and stochas-
tic equations in order to construct a numerical method for the integration of SDEs driven by commutative
noise. This idea of using an auxiliary RDE for solving a SDE is not new in the context of numerical meth-
ods. In fact, it is called the ODE approach for solving SDEs and it has been well-studied in the literature [6–
8]. However, this paper is the first attempt of using the conjugacy property for defining a numerical method
for SDEs. In this way, our approach opens new opportunities for the comparison of the long-time behavior
of SDEs and their numerical approximations. Indeed, it is possible to study the numerical dynamics of a
SDE by just analyzing its conjugate RDE, which is possible by simple pathwise classical (deterministic)
arguments.

A key stone in the derivation of the numerical integrator introduced in this paper is the local linearization
(LL) technique, which directly allows the use of the analytical expression for the conjugacy between pure noise
linear SDEs and RDEs. This linearization approach has been previously used to derive a class of stable and
efficient numerical methods for ODEs, RDEs and SDEs (see for instance [9–12] and references therein). The
basic components of the LL approach are the piecewise linear approximation (by the first-order Taylor expan-
sion) of the vector fields and the numerical integration (often exact) of the resulting linear equation. In the case
of SDEs, the LL approach has been restricted either to the class of equations with additive noise terms or sca-
lar equations with multiplicative noise. Therefore, the application of the LL method to cover wider classes of
SDEs is an appealing challenge. In particular, this paper focuses in the class of SDEs driven by (multiplicative)
commutative noises. This class includes a number of well-known examples that have been studied in several
applied fields, such as the stochastic Duffing–van der Pol oscillator, the noisy harmonic oscillators in potential
wells and the stochastic Lorenz equations [13]. Specifically, the approach followed in this paper results from
the combination of the LL technique and the above mentioned conjugacy property to define a LL scheme for
the class of commutative noise SDEs. The implementation of the proposed LL scheme consists of two basic
steps: (1) Local approximation of the conjugacy diffeomorfism through the solution of a piecewise pure-dif-
fusion linear SDE driven by an Ornstein–Uhlenbeck process; and (2) Numerical solution of the piecewise con-
jugate RDE by the LL method given in [11].

The paper is organized as follows. Section 2 summaries the main results about the conjugacy between SDEs
and RDEs that will be used throughout the paper. In Sections 3 and 4 the new numerical scheme is introduced
for single-noise and commutative noise SDEs, respectively. Some implementation issues are also discussed in
both sections. Finally, in Section 5, the performance of the new schemes is illustrated through three test
examples.

2. Conjugacy of stochastic and random differential equations

Let wt ¼ ðw1
t ; . . . ;wm

t Þ be a m-dimensional standard Wiener process and let
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dxt ¼ f0ðxtÞdt þ
Xm

i¼1

f iðxtÞ � dwi
t; t P 0; ð1Þ

xt0 ¼ x0 ð2Þ
be a Stratanovich SDE on Rd with vector fields f0; . . . ; fm smooth enough and globally Lipschitz, so that its
corresponding flow / globally exists. Furthermore, assume that, for all 1 6 i; j 6 m, the Lie product
½f i; fj� ¼
of i

ox
fj �

ofj

ox
f i
satisfies the commutativity condition
½f i; fj� ¼ 0; ð3Þ

where of i

ox
denotes the partial derivative of fi with respect to x.

Let u : Rm � Rd ! Rd be the smooth vector field that satisfies
ou

ozi
ðz; xÞ ¼ f iðuðz; xÞÞ; i ¼ 1; . . . ;m;

uð0; xÞ ¼ x

ð4Þ
for ðz; xÞ 2 Rm � Rd . In addition, let U be the stationary diffeomorfism defined by U ¼ uðz0; �Þ and let
Ut; t P 0 be the diffeomorfism on Rd that solves the pure-diffusion differential equation
dUt ¼
Xm

i¼1

f iðUtÞ � dzi
t; t P 0;

U0 ¼ U;

ð5Þ
where
dzi
t ¼ �lzi

t dt þ dwi
t ð6Þ
is a stationary Ornstein–Uhlenbeck process, for all i ¼ 1; . . . ;m, and l > 0 . Then the following theorem states
a conjugacy (defined through U) between the SDE (1) and a RDE.

Theorem 1 (Theorem 1.3 in [1]). Let ðvtÞtP0 be the flow on Rd generated by the random differential equation
dyt ¼ gðzt; ytÞdt; ð7Þ

where
gðzt; ytÞ ¼
oUt

ox

� ��1

f0ðUtytÞ þ l
Xm

i¼1

f iðUtytÞzi
t

 !
and zt ¼ ðz1
t ; . . . ; zm

t Þ. Then, for all x 2 Rd
/tðxÞ ¼ UtvtðU�1xÞ; ð8Þ

where ð/tÞtP0 denotes the flow of Eq. (1).

The following proposition gives an explicit expression for the solution uðz; xÞ of the system (4). This, in
turn, can be used to get explicit expressions for Ut and U.

Proposition 2 (Proposition 5.1.10 in [14]). The solution uðz; xÞ of the system (4) is given by the composition in

any order of the commutative flows nf1

z1ðxÞ; nf2

z2ðxÞ; . . . ; nfm
zmðxÞ, where for each i ¼ 1; . . . ;m, the flow nf i

ziðxÞ satisfies

the ODE
dnfi
ziðxÞ
dzi

¼ f iðnfi
ziðxÞÞ;

nfi
0 ðxÞ ¼ x:



1222 F. Carbonell et al. / Journal of Computational Physics 226 (2007) 1219–1233
Besides,
uðzþ z0; �Þ ¼ uðz; �Þ � uðz0; �Þ ð9Þ

and
ðuðz; �ÞÞ�1 ¼ uð�z; �Þ ð10Þ

for all z; z0 2 Rm.

In the next sections the solution xt ¼ /tðx0Þ of (1) and (2) is approximated on the base of the conjugacy
relationship (8). This requires the approximation of both, the corresponding conjugacy U and the flow vt asso-
ciated to RDE (7), which will be achieved through a local linearization approach.

3. Local linearization method for single-noise SDEs

Consider the single-noise SDE
dxt ¼ f0ðxtÞdt þ f1ðxtÞ � dwt ð11Þ

with initial condition xt0

¼ x0. Let (t)h be a time partition defined as
ðtÞh ¼ f0 ¼ t0 < t1 < � � � < tn < � � �g;

where
sup
n
ðtnþ1 � tnÞ 6 h < 1:
For all tn 2 ðtÞh, let ytn 2 Rd be a point close to xtn , and consider the SDE
dyt ¼ f0ðytÞdt þ ðAtn
1 yt þ btn

1 Þ � dwt; tn 6 t 6 tnþ1 ð12Þ

with initial point ytn , which is obtained from the local linear approximation (by first-order Taylor expansion)
of the vector field f1 around ytn

. That is,
f1ðytÞ � ~f1ðytÞ ¼ Atn
1 yt þ btn

1 ; tn 6 t 6 tnþ1;
where Atn
1 ¼ of1

ox
ðytn
Þ and btn

1 ¼ f1ðytn
Þ � Atn

1 ytn . Then, according to the local linearization approach, the solution
ytnþ1

of Eq. (12) at tnþ1 defines a point closed to xtnþ1
. In this way, starting with yt0

¼ xt0 , a sequence of points
fytng is obtained as an approximation to fxtng. Equivalently, if /t and /tn

t denote the flow of Eqs. (11) and (12),
respectively, then
/tðxtnÞ � /tn
t ðytnÞ;
for all tn 2 ðtÞh, t 2 ½tn; tnþ1�, which defines the recursive expression
ytnþ1
¼ /tn

tnþ1
ðytnÞ: ð13Þ
for approximating xtnþ1
. Moreover, according to Theorem 1
/tn
t ðytnÞ ¼ Utn

t vtn
t ððUtnÞ�1

ytnÞ; tn 6 t 6 tnþ1; ð14Þ
where vtn
t is the flow generated by the random differential equation
dvt ¼ gðvt; ztÞdt; tn 6 t 6 tnþ1 ð15Þ

with
gðvt; ztÞ :¼ oUtn
t

ox

� ��1

ðf0ðUtn
t vtÞ þ l~f1ðUtn

t vtÞztÞ:
Besides, by Proposition 2, the conjugacy Utn is a linear operator on Rd given by
Utn x ¼ expðAtn
1 ztnÞxþ

Z ztn

0

expðAtn
1 ðztn � sÞÞbtn

1 ds
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for x 2 Rd , and so
Utn
t x ¼ expðAtn

1 ztÞxþ
Z zt

0

expðAtn
1 ðzt � sÞÞbtn

1 ds
for all t 2 ½tn; tnþ1�. From (13) and (14) it follows that:
ytnþ1
¼ Utn

tnþ1
vtn

tnþ1
ððUtnÞ�1

ytnÞ; ð16Þ
which equivalently defines the local linear approximation for xtnþ1
in term of the flow of the RDE (15).

With the change of variable ut ¼ expðAtn
1 ztnÞvt the recursion (16) can be rewritten as
ytnþ1
¼ Utn

tnþ1
expð�Atn

1 ztnÞutnþ1
;

where the function ut satisfies the RDE
dut ¼ qnðut; ztÞdt

utn ¼ expðAtn
1 ztnÞðUtnÞ�1

ytn

ð17Þ
for all t 2 ½tn; tnþ1�, with
qnðut; ztÞ ¼ expðAtn
1 ztÞgðexpð�Atn

1 ztnÞut; ztÞ
¼ expð�Atn

1 ðzt � ztnÞÞ½f0ðUtn
t expð�Atn

1 ztnÞutÞ þ l~f1ðUtn
t expð�Atn

1 ztnÞutÞzt�:
If in addition
utnþ1
¼ utn þ Fnðutn ; ztn ; hnÞ; hn ¼ tnþ1 � tn
denotes the approximated solution of Eq. (17) at t ¼ tnþ1 given by a one-step explicit integrator, then the map
(16) can be approximated by the map
ynþ1 ¼ Un
nþ1½ðUnÞ�1

yn þ expð�An
1ztnÞFnðexpðAn

1ztnÞðUnÞ�1
ytn
; ztn ; hnÞ�
with the initial point y0 ¼ yt0
, where
Unx ¼ expðAn
1ztnÞxþ

Z ztn

0

expðAn
1ðztn � sÞÞbn

1 ds; x 2 Rd ;
An
1 ¼ of1

ox
ðynÞ, bn

1 ¼ f1ðynÞ � An
1yn and
Un
nþ1x ¼ expðAn

1ztnþ1
Þxþ

Z ztnþ1

0

expðAn
1ðztnþ1

� sÞÞbn
1 ds; x 2 Rd :
From the linearity of Un
nþ1 follows that:
ynþ1 ¼ Un
nþ1ðUnÞ�1

yn þ expðAn
1DznÞFnðexpðAn

1ztnÞðUnÞ�1
ytn ; ztn ; hnÞ;
whereas from properties (9) and (10) it is obtained
ynþ1 ¼ expðAn
1DznÞyn þ

Z Dzn

0

expðAn
1ðDzn � sÞÞbn

1 dsþ expðAn
1DznÞFnðexpðAn

1ztnÞðUnÞ�1
ytn ; ztn ; hnÞ;
where Dzn :¼ ztnþ1
� ztn . Moreover, by using the identity
Z Dzn

0

expðAn
1ðDzn � sÞÞAn

1 ds ¼ expðAn
1DznÞ � Id ð18Þ
it is obtained
ynþ1 ¼ yn þ
Z Dzn

0

expðAn
1ðDzn � sÞÞf1ðynÞdsþ expðAn

1DznÞFnðexpðAn
1ztnÞðUnÞ�1

yn; ztn ; hnÞ;
which provides an approximation to xtnþ1
in terms of an approximation to the flow of the RDE (17). Here, Id

denotes the d-dimensional identity matrix.
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In principle, any numerical method for RDEs can be used. For instance, the well-known Euler scheme for
Eq. (15) gives [15,16]
FnðexpðAn
1ztnÞðUnÞ�1

yn; ztn ; hnÞ ¼ hnðf0ðynÞ þ lf1ðynÞztnÞ

However, the simulation results presented in [11] indicated that the LL scheme has better performance than
Euler and Heun schemes for approximating the dynamics of nonlinear RDEs. Thus, the choice of the LL
scheme for Eq. (15) is in order. According to Section 2 in [11], the LL scheme gives
FnðexpðAn
1ztnÞðUnÞ�1

yn; ztn ; hnÞ ¼ L0 expðCnhnÞR0;
where
Cn ¼

oFn
ou
ðun; ztnÞ oFn

ozt
ðun; ztnÞ Dzn

hn
Fnðun; ztnÞ

0 0 1

0 0 0

0
B@

1
CA 2 Rðdþ2Þ�ðdþ2Þ;
L0 ¼ ½Id0d�2� and R0 ¼ ½01�ðdþ1Þ1�T, with
un ¼ expðAn
1ztnÞðUnÞ�1

yn

Fnðun; ztnÞ ¼ f0ðynÞ þ lf1ðynÞztn ;

oFn

ou
ðun; ztnÞ ¼ An

0 þ lAn
1ztn ;

oFn

ozt
ðun; ztnÞ ¼ An

0f1ðynÞ � An
1f0ðynÞ þ lf1ðynÞ
and An
0 ¼

of0

ox
ðynÞ. Therefore,
ynþ1 ¼ yn þ
Z Dzn

0

expðAn
1ðDzn � sÞÞf1ðynÞdsþ expðAn

1DznÞL0 expðCnhnÞR0;
which by Theorem 1 in [17] can be rewritten as
ynþ1 ¼ yn þ L1 expðDnDznÞR1 þ expðAn
1DznÞL0 expðCnhnÞR0; ð19Þ
where
Dn ¼
An

1 f1ðynÞ
0 0

� �
2 Rðdþ1Þ�ðdþ1Þ;
L1 ¼ ½Id0d�1� and R1 ¼ ½01�d1�T. The recursive expression (19) defines finally the conjugated LL approximation
to the solution of the single-noise SDE (11) for all tn 2 ðtÞh.

For computational purposes and according to Theorem 1 in [17] the above scheme can be rewritten as
ynþ1 ¼ yn þ v1ðynÞ þ BðynÞv2ðynÞ; ð20Þ

where the d-dimensional vectors v1ðynÞ, v2ðynÞ and the d � d matrix BðynÞ are defined in the following block
matrices:
BðynÞ v1ðynÞ
� �

� �
¼ expðDnDznÞ and

� v2ðynÞ
� �

� �
¼ expðCnhnÞ:
It is obvious that the main computational task for implementing the scheme (20) is the computation of matrix
exponentials. A number of algorithms are available for this purpose. For instance, those based on rational
Padé approximations, the Schur decomposition or Krylov subspace methods (see [18,19] for excellent reviews).
The choice of one of them will mainly depend on the size and structure of the matrices Cn and Dn in (20). For
high dimensional matrices, Krylov subspace methods are strongly recommended. For matrices of certain spe-
cial structures, several algorithms are presented in [20]. Nowadays, professional mathematical softwares, such
as MATLAB, provide efficient codes that implement a number of such algorithms. On this basis, the numer-
ical evaluation of the scheme under consideration can be carried out in an effective, accurate and simple way.
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Similar implementations for computing the LL method for ODEs and SDEs have been elaborated in [21],
where more details about related issues can be found.

4. Local linearization method for commutative noise case

The approach followed in the previous section can be directly extended to more general equations. So, con-
sider the commutative noise SDE
dxt ¼ f0ðxtÞdt þ
Xm

i¼1

f iðxtÞ � dwi
t;

xt0
¼ x0

ð21Þ
with m > 1. For this, in addition to the commutative condition (3), suppose that
of i

ox

ofj

ox
� ofj

ox

of i

ox
¼ 0 ð22Þ
also holds, for all 1 6 i; j 6 m and x 2 Rd .
Conditions (3) and (22) are required for applying the conjugacy Theorem 1 to the local linear approxima-

tions of Eq. (21). It is worth to note that there is a number of classes of SDEs satisfying both assumptions.
Example are the d-dimensional systems of the form
dxi
t ¼ aiðx1

t ; ::; x
d
t Þdt þ biðxi

tÞdwi
t; i ¼ 1 . . . d
and
dxi
t ¼ aiðx1

t ; . . . ; xd
t Þdt; i ¼ 1 . . . d � 1;

dxd
t ¼ adðx1

t ; . . . ; xd
t Þdt þ

Xm

j¼1

bjðx1
t ; . . . ; xd

t Þdwj
t ;
which include a number of well-known equations such as Shiga model [28] in the framework of genetics and
the general stochastic Duffing–van der Pol oscillator considered in [29], just for mention a few.

Similarly to the previous section, the LL scheme will be obtained from the linearization of the vector fields fi

around each point ytn 2 Rd closed to xtn . That is,
f iðxtÞ � ~f iðxtÞ ¼ Atn
i xt þ btn

i ; tn 6 t 6 tnþ1
for all tn 2 ðtÞh and i ¼ 1; ::;m, where Atn
i ¼ ofi

ox
ðytn
Þ and btn

i ¼ f iðytn
Þ � Atn

i ytn . Thus, according to the local lin-
earization approach, the solution ytnþ1

of the equation
dyt ¼ f0ðytÞdt þ
Xm

i¼1

~f iðytÞ � dwt; tn 6 t 6 tnþ1 ð23Þ
at tnþ1 defines a point closed to xtnþ1
.

It is easy to see that conditions (3) and (22) guarantee the commutativity of the vector fields ~f i as well, i.e.
the linear SDE (23) is also driven by commutative noise. Therefore, Theorem 1 applied to (23) yields to the
approximation
/tðxtnÞ � /tn
t ðytn
Þ :¼ Utn

t vtn
t ððUtnÞ�1

ytnÞ; tn 6 t 6 tnþ1
between the flow /t of the SDEs (21) and the flow vtn
t of the piecewise RDE
dyt ¼
oUtn

t

ox

� ��1

f0ðUtn
t ytÞ þ l

Xm

i¼1

~f iðUtn
t ytÞzi

t

 !
dt; tn 6 t 6 tnþ1:
In this case, Proposition 2 gives
Utn x ¼ n
f1;tn

z1
tn
� n

f2;tn
z2

tn
� � � � � n

fm;tn
zm

tn
ðxÞ
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and
Utn
t x ¼ n

f1;tn
z1

t
� n

f2;tn

z2
t
� � � � � n

fm;tn
zm

t
ðxÞ
with
n
fi ;tn

zi
t
¼ expðAtn

i zi
tÞxþ

Z zi
t

0

expðAtn
i ðzi

t � sÞÞbtn
i ds:
Similarly to the previous section, it can be seen that the expression
ytnþ1
¼ Utn

tnþ1
exp �

Xm

i¼1

Atn
i zi

tn

 !
utnþ1
provides an approximation to xtn , for all tn 2 ðtÞh, where the function ut satisfies the RDE
dut ¼ qnðut; ztÞdt

utn ¼ exp
Xm

i¼1

Atn
i ztn

 !
ðUtnÞ�1

ytn

ð24Þ
for all t 2 ½tn; tnþ1�, with
qnðut; ztÞ ¼ exp
Xm

i¼1

Atn
i zi

tn

 !
g exp �

Xm

i¼1

Atn
i zi

tn

 !
ut; zt

 !

¼ expð�
Xm

i¼1

Atn
i ðzi

t � zi
tn
ÞÞ f0 Utn

t exp �
Xm

i¼1

Atn
i zi

tn

 !
ut

 !
þ l

Xm

j¼1

~f iðUtn
t exp �

Xm

i¼1

Atn
i zi

tn

 !
utÞzi

t

" #
:

Moreover, if a one-step map Fn is defined as in the previous section, it is obtained the recursion
ynþ1 ¼ Un
nþ1ðUnÞ�1

yn þ exp
Xm

i¼1

An
i Dzi

n

 !
Fn exp

Xm

i¼1

An
i zi

tn

 !
ðUnÞ�1

yn; ztn ; hn

 !
with initial point y0 ¼ yt0
, where
Un
nþ1x ¼ n

f1;n
z1

tnþ1

� n
f2;n
z2

tnþ1

� � � � � n
fm;n
zm

tnþ1

ðxÞ
and Un :¼ Un
n, with
n
fi ;n
zi

tnþ1

¼ expðAn
i zi

tnþ1
Þxþ

Z zi
tnþ1

0

expðAn
i ðzi

tnþ1
� sÞÞbn

i ds;
An
i ¼ ofi

ox
ðynÞ, bn

i ¼ f iðynÞ � An
i yn and Dzi

n ¼ zi
tnþ1
� zi

tn
. Again, by using (9), (10) and (18) follows that:
ynþ1 ¼ n
f1;n
Dz1

n
� n

f2;n
Dz2

n
� � � � � nfm;n

Dzm
n
ðynÞ þ exp

Xm

i¼1

An
i Dzi

n

 !
Fnðexp

Xm

i¼1

An
i zi

tn

 !
ðUnÞ�1

yn; ztn ; hnÞ

¼ yn þ
Xm

i¼1

exp
Xi�1

j¼1

An
j Dzj

n

 !Z Dzi
n

0

expðAn
i ðDzi

n � sÞÞf iðynÞds

þ exp
Xm

i¼1

An
i Dzi

n

 !
Fn exp

Xm

i¼1

An
i zi

tn

 !
ðUnÞ�1

yn; ztn ; hn

 !
:

Finally, as in the previous section, if the LL scheme is used to approximate the solution of RDE (24) then
Fn exp
Xm

i¼1

An
i zi

tn

 !
ðUnÞ�1

yn; ztn ; hn

 !
¼ L0 expðCnhnÞR0;
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where
Cn ¼

oqn
ou
ðun; ztnÞ

Pm
j¼1

oqn
ozj ðun; ztnÞ

Dzj
n

hn
qnðun; ztnÞ

0 0 1

0 0 0

0
BBB@

1
CCCA 2 Rðdþ2Þ�ðdþ2Þ
with
un ¼ exp
Xm

i¼1

An
i zi

tn

 !
ðUnÞ�1

yn;

qnðun; ztnÞ ¼ f0ðynÞ þ l
Xm

i¼1

f iðynÞzi
tn
;

oqn

ou
ðun; ztnÞ ¼ An

0 þ l
Xm

i¼1

An
i zi

tn
;

oqn

ozj
ðun; ztnÞ ¼ An

0fjðynÞ � An
j f0ðynÞ þ lfjðynÞ
and An
0 ¼

of0

ox
ðynÞ. In this way, the recursive expression
ynþ1 ¼ yn þ
Xm

i¼1

exp
Xi�1

j¼1

An
j Dzj

n

 !
L1 expðDi

nDzi
nÞR1 þ exp

Xm

i¼1

An
i Dzi

n

 !
L0 expðCnhnÞR0 ð25Þ
with initial point y0 ¼ x0, defines the conjugated LL approximation to the solution of the commutative noise
SDE (21), for all tn 2 ðtÞh, where
Di
n ¼

An
i f iðynÞ

0 0

� �
2 Rðdþ1Þ�ðdþ1Þ
and L0, L1, R0, R1 are defined as in the previous section.
For computational purposes, Theorem 1 in [17] yields to the scheme
ynþ1 ¼ yn þ
Xm

i¼1

Yi�1

j¼1

BjðynÞ
 !

vi
1ðynÞ þ

Ym

i¼1

BiðynÞv2ðynÞ;
where the d-dimensional vectors vi
1ðynÞ, v2ðynÞ and the d � d matrices BiðynÞ are defined by the following block

matrices:
BiðynÞ vi
1ðynÞ

� �

 !
¼ expðDi

nDznÞ and
� v2ðynÞ
� �

� �
¼ expðCnhnÞ:
5. Numerical simulations

In this section the performance of the LL method is illustrated by means of three test examples. In all exam-
ples, the parameter l of the Ornstein–Uhlenbeck process zt was chosen as l = 1. The first one corresponds to
the stochastic Duffing–van der Pol oscillator with a single multiplicative noise in the position, which is
described by the stochastic differential equation
dx1 ¼ x2 dt;

dx2 ¼ ð�ax1 þ bx2 � x2
1ðx1 þ x2ÞÞdt þ rx1 � dwt;

x1ð0Þ ¼ x2ð0Þ ¼ 1;

ð26Þ
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where b is the damping parameter, a the parameter controlling the strength of the restoring force and r is
the intensity of the noise. A number of works have been carried out for studying the dynamical behavior
of this equation (see [22] and references therein). Of particular interest has been the investigation of the
stochastic bifurcation scenario of this system [23]. It is well-known that the deterministic Duffing–van der
Pol oscillator (r = 0) exhibits a Hopf bifurcation for the value b = 0 (considered as bifurcation parameter)
and fixed a. That is, the fixed point ðx1; x2Þ ¼ ð0; 0Þ is a global attractor for b 6 0 and becomes unstable
for b > 0, where the new attractor takes the form of a topological disc. Formally, the Hopf bifurcation
can be investigated by analyzing the two eigenvalues of the linearization at zero as functions of the
parameter b.

In the stochastic case the analysis is rather complicated. Indeed, the above mentioned eigenvalues need to
be replaced by the Lyapunov exponents of the SDE (26). In this case the origin remains as a stable fixed point
as long as the top Lyapunov exponent k1 (as function of the bifurcation parameter b) be negative. Hence, sta-
bility is lost when k1 becomes positive and two different qualitative behavior emerges, which depends on the
sign of the second Lyapunov exponent k2. The simulation results presented in this section focus on the three
different qualitative scenarios given by the conditions k2 < 0 < k1, k2 < k1 < 0 and 0 < k2 < k1, respectively.
As in the deterministic case, the second scenario corresponds to a global attractor ðx1; x2Þ ¼ ð0; 0Þ. The case
k2 < 0 < k1 is associated with the hyperbolic (saddle) scenario and for the third one the fixed point (0,0) is
a repealer, leading to a topological disc type global attractor.
Fig. 1. Comparison of the Milstein, implicit Euler and local linearization schemes in the integration of Eq. (26), with values r ¼ 3,
b ¼ �0:5, a ¼ 0:25 corresponding to the strange attractor type scenario (k2 < 0 < k1). For each scheme, the phase-portraits show the
approximations obtained with step-sizes h ¼ 2�3; 2�4; 2�7.
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The simulations below are going to show the performance of the introduced LL method in these three dif-
ferent qualitative scenarios. For this purpose, the value of the parameter is chosen as a ¼j bj2, for which it is
known from [24] that
Fig. 2.
scenar
approx
k1 ¼ bþ c1=3

2
121=3 C 1

2

� �
C 1

6

� � ;
k2 ¼ b� c1=3

2
121=3 C 1

2

� �
C 1

6

� � ;

with c ¼ r2

2
. Hence, by fixing r, the three scenarios can be reproduced by a suitable choice of the parameter b.

Three different combination of these parameters were used for the integration of the system (26) on 0 6 t 6 50.
Fig. 1 shows the comparison among the Milstein scheme, the implicit Euler scheme and the LL scheme (20)

for the hyperbolic fixed point scenario (k2 < 0 < k1), corresponding to the values r ¼ 3, b ¼ �0:5 and
a ¼ 0:25. Rows correspond to approximations obtained with different step-sizes h ¼ 2�3; 2�4; 2�7. For the sake
of comparison, in this and in the figures below, all phase-portraits are plotted at the same discrete times asso-
ciated with the coarsest partition ðtÞhmax

, where hmax ¼ 2�3. It is seen that all the plots in the right column are
more similar to those in the last row, which evidences the well performance of the LL method even for the
moderately large step size h ¼ 2�3. Notice that the explicit Milstein scheme (first column) shows the poorest
performance.
Trajectories of the Milstein, implicit Euler and local linearization schemes around the fixed point (0,0), corresponding to the
io (k2 < k1 < 0) of the system (26) with parameters r ¼ 3, b ¼ �1:2, and a ¼ 1:44. For each scheme, the phase-portraits show the
imations obtained with step-sizes h ¼ 2�3; 2�4; 2�7.
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Fig. 2 shows the trajectories obtained by said three schemes around the asymptotically stable fixed point
(0,0) (corresponding to k2 < k1 < 0). In this case the parameters of the Eq. (26) were chosen as r ¼ 3,
b ¼ �1:2 and a ¼ 1:44. As in Fig. 1, the Milstein scheme does not perform well for the largest step size
h ¼ 2�3 in comparison with the implicit Euler and LL schemes. Also notice that even for large step-sizes
h ¼ 2�3 and h ¼ 2�4 , the LL scheme correctly reproduces fine details of the exact solution around the stable
fixed point.

Fig. 3 shows the repealer fixed point scenario (0 < k2 < k1) corresponding to r ¼ 3, b ¼ 2, and a = 4.
Notice that the approximation provided by the Milstein scheme does not reconstruct at all the actual dynamics
of the system. In fact, this provides an approximation that explodes at time t ¼ 9. In contrast, the LL method
shows a well performance for all step sizes.

It can be concluded from these figures that the behavior of the LL scheme is very similar to that of the
implicit Euler scheme for all step sizes. However, the implicit Euler scheme requires much more computational
effort than the LL method. This is demonstrated in Table 1, which shows the relative CPU time for each
numerical scheme with respect to the explicit Milstein scheme. Notice that the CPU time for the LL method
is around 30 times lower than that for the implicit Euler method.

The second example is the stochastic planar Brusselator [25]
Fig. 3.
and a =
with st
Comparison of the Milstein, implicit Euler and local linearization scheme in the integration of Eq. (26), with values r ¼ 3, b ¼ 2
4 corresponding to the limit cycle scenario (0 < k2 < k1). For each scheme, the phase-portraits show the approximations obtained

ep-sizes h ¼ 2�3; 2�4; 2�7.



Table 1
Relative CPU times for different numerical schemes

Scheme Milstein Local linearization Implicit Euler

Relative CPU time 1 2.8396 85.7914

Fig. 4.
r, with
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dx1 ¼ ½ða� 1Þx1 þ ax2
1 þ ð1þ x1Þ2x2�dt þ rx1ð1þ x1Þ � dwt;

dx2 ¼ ½�ax1ð1þ x1Þ � ð1þ x1Þ2x2�dt � rx1ð1þ x1Þ � dwt;

x1ð0Þ ¼ x2ð0Þ ¼ 0:5;

ð27Þ
whose classical deterministic version has been used for modeling unforced periodic oscillations in certain
chemical reactions.

This equation has been well-studied in the context of the theory of RDS in [26]. The deterministic Brusse-
lator (r = 0) has a fixed point ðx1; x2Þ ¼ ð0; 0Þ, which is stable for 0 < a 6 2, unstable for a > 2 and and under-
goes a Hopf bifurcation at the value a = 2. For the stochastic case (r 6¼ 0), it was shown in [27] that the
Lyapunov exponents remain negatives for the whole range of the parameter a and two different qualitative
scenarios emerges. Namely, an asymptotically stable fixed point for a < 2 and a ‘‘limit cycle’’ for a > 2.

It is well-known that even in the deterministic case, many numerical methods fail to integrate Eq. (27) for
a > 2 and moderate large step sizes. Fig. 4 shows the phase-portraits of this equation obtained by the Milstein,
Phase-portraits of Eq. (27) obtained by Milstein, implicit Euler and local linearization schemes for different values of the parameter
a = 3 fixed. For each scheme, the plots show the approximations obtained with step-size h ¼ 2�5.
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implicit Euler, and local linearization schemes for different values of the parameter r, with a = 3 fixed. For
each scheme, the plots show the approximations obtained over 0 6 t 6 200 with step-size h ¼ 2�5. Notice that,
for larger values of r, the Milstein scheme lead to numerical explosions. On the contrary, the LL method
shows more stable behavior for each value of the noise level r.

The final example corresponds to the stochastic Duffing–van der Pol oscillator with both a multiplicative
and an additive noise. This is described by the equation
Fig. 5.
b ¼ 1,
sizes h
dx1 ¼ x2 dt;

dx2 ¼ ð�ax1 þ bx2 � x2
1ðx1 þ x2ÞÞdt þ r1x1 � dw1

t þ r2 � dw2
t ;

x1ð0Þ ¼ x2ð0Þ ¼ 1;

ð28Þ
where the parameters a, b are as in Eq. (26) and r1, r2 represent the intensities of the two independent noises.
This equation was numerically integrated on the interval 0 6 t 6 50 and the parameters were chosen as r1 ¼ 1,
b = 1, a = 1 and r2 ¼ 8. Fig. 5 shows the results obtained with the step-sizes h ¼ 2�3; 2�4; 2�7 by the LL
scheme (25) and by the Milstein and implicit Euler as well. As in the previous figures, the LL method has
a similar behavior to the implicit Euler scheme. Notice also that this result agrees with the ones reported
by [1], which states the existence of a global attractor for the system (28).

The results of this section evidence that the LL scheme introduced in this paper achieves a convenient trade-
off between numerical stability and computational cost, and reproduces the dynamics of SDEs much better
Comparison of the Milstein, implicit Euler and local linearization scheme in the integration of Eq. (28) with values r1 ¼ 1, r2 ¼ 8,
a = 1 corresponding to a limit cycle scenario. For each scheme, the phase-portraits show the approximations obtained with step-
¼ 2�3; 2�4; 2�7.
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than standard explicit integrators. This agrees with similar results reported with LL schemes for ODEs, RDEs
and SDEs with additive noise.

References

[1] P. Imkeller, B. Schmalfuss, The conjugacy of stochastic and random differential equations and the existence of global attractors, J.
Dyn. Differen. Equat. 13 (2001) 215–249.

[2] P. Imkeller, C. Lederer, On the cohomology of flows of stochastic and random differential equations, Probab. Theory Relat. Fields
120 (2001) 209–235.

[3] P. Imkeller, C. Lederer, The cohomology of stochastic and random differential equations, and local linearization of stochastic flows,
Stochast. Dyn. 2 (2002) 131–159.

[4] H. Doss, Liens entre ‘equations diff’ erentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré Probab. Statist. XIII (1) (1977) 99–
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